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EXECUTIVE SUMMARY

The extension of service life of Nuclear Power Plants (NPPs) in the United States from 60 to 80 years
requires an assessment of the durability of all components under long-term operation conditions, including
the concrete structure itself. This, in turns, requires building predictive numerical models able to represent
the long-term material behavior.

To address this issue, the Light Water Reactor Sustainability (LWRS) Program is developing the Finite
Elements Method (FEM) software Grizzly (see LWRS report INL/EXT-16-38310), in which a numerical
model for Alkali-Silica Reaction (ASR) in concrete was developed (see LWRS report INL/EXT-15-36425).
However, to be predictive, such a model requires an underlying constitutive model for concrete that accounts
for the material quasi-brittle, non-linear, and time-dependent nature. In previous reports
(M3LW-16OR-0403053 and M3LW-17OR-0403054), the following items were identified as missing
components to achieve a representative concrete constitutive model (in order of priority):

1. A continuum damage model able to capture the asymmetric behavior of concrete in tension and in
compression. This is the topic of the NEUP project DE-NE0008438 "Multiple Degradation
Mechanisms in Reinforced Concrete Structures, Modeling and Risk Analysis".

2. A concrete creep model able to represent the delayed deformations of concrete under sustained load
and its stress relaxation. This topic is covered by the present report.

3. A model representing the rebar-concrete debonding properties. This topic is yet to be addressed.

In this report, a numerical model for concrete creep adapted from existing models in the literature is
presented. The model uses a well-known time-stepping procedure to account for the progress of the various
creep strains over time. It is able to represent the key features of concrete creep, including temperature
effects, drying effects, and a long-term logarithmic increase.

Examples of Grizzly input files are provided as well as a comparison between numerical and analytical
results proving the correct implementation of the model into Grizzly.
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INTRODUCTION

In the United States, NPPs are being evaluated for a second license renewal, extending their service life
from 60 to 80 years. This requires the assessment of the durability of all components under long-term
operating conditions, including the concrete structure itself. Concrete is an aging material, whose properties
evolve as a function of time. One prominent aspect of concrete aging is creep, that is, an increase in strain
under a sustained load. Creep can also be understood as its counterpart, stress relaxation, a decrease of stress
under a constant deformation.

Creep plays a significant role in the long-term performance of concrete structures. On one hand, the
stress relaxation phenomenon may lead to a loss of prestress in pre- or post-tensioned reinforced members
(e.g. [Nilson, 1978, Tadros et al., 1985]). On the other hand, creep partially controls the micro-cracking
induced by internal degradation phenomena such as ASR or Radiation-Induced Volumetric
Expansion (RIVE) (e.g. [Grimal et al., 2010, Giorla, 2015, Giorla et al., 2017]). Therefore, it is critical to
account for creep in the assessement of the long-term performance of concrete structures such as NPPs.

Creep in concrete is a highly complex phenomenon which depends on a wide range of factors, and has
been extensively studied through the years. Notably, concrete creep exhibits the following aspects:

• High temperature accelerates the creep phenomenon.

• A lower constant relative humidity decreases creep, but creep is increased under drying conditions.
This is often referred to as the Pickett effect in the literature.

• Creep becomes nonlinear with the load when the stress exceeds around 40 % of the material strength.
Under very high loading, concrete exhibits tertiary creeps which may ultimately lead to delayed failure
of the material.

• Creep is asymmetric in tension and in compression.

• Creep deformations are not entirely recovered upon unloading.

• Past experience in bridge structures has shown that concrete creeps indefinitely (at least, on a 100 years
time scale) [Bažant et al., 2012], even though the rate of the creep deformation decreases with time.
This matches the observation that at the nano-scale, the creep behavior of the Calcium-Silicate
Hydrates (C-S-H) (the phase from which concrete creep originates) is also logarithmic [Vandamme
and Ulm, 2009, Zhang et al., 2014].

Concrete creep is generally expressed within the framework of aging linear viscoelasticity (neglecting
the nonlinearity with respect to the load level). A linear viscoelastic material is represented with a series of
springs and dashpots assembled in series or in parallel, usually with a generalized Maxwell or generalized
Kelvin-Voigt model. Aging is introduced by varying the material constants of each spring or dashpot as a
function of time, temperature, relative humidity, or other factors. Doing so allows to represent most of the
features listed above.

The present report details a finite element implementation of a concrete creep model within the MOOSE
and Grizzly softwares developed at Idaho National Laboratory (INL) [Spencer et al., 2016, Huang et al.,
2015]. It consists of two distinct parts:

• In MOOSE, a generic numerical framework is implemented to simulate materials represented with
springs and dashpots. The framework follows a single-step finite difference procedure to integrate the
time- and history-dependent material behavior, adapted from [Zienkiewicz et al., 1984].

1



• In Grizzly, a constitutive model for concrete creep is developed, based on the framework developed in
MOOSE, and that reproduces key aspects of the material behavior including its logarithmic nature, and
the effects of temperature and relative humidity (both constants and varying).

This separation has been made so that new constitutive models for concrete creep can be implemented
without having to reimplement the time-stepping procedure. This facilitates model development and
increases the code robustness.

The mathematical framework implemented into MOOSE is detailed first, followed by the concrete creep
model itself. Finally, examples of MOOSE and Grizzly input files, with comparison with known analytical
solutions, are shown.

2



NUMERICAL MODELS FOR LINEAR VISCOELASTICITY

This section presents a generalized framework to simulate linear visco-elastic materials in a FEM
software. The framework uses a first-order, single-step Finite Difference (FD) scheme to integrate the
material constitutive law in time, based on the original work from [Zienkiewicz et al., 1968].

It has been implemented within the tensor_mechanics module of MOOSE, thus making it available
for a wide range of users.

The framework assumes that linear viscoelastic materials are represented with a network of springs and
dashpots, typically assembled in series or in parallel. No assumption is made on the time-dependence of
these springs and dashpots, which makes it possible to simulate aging viscoelastic materials, as long as they
remain linear with respect to the primary stress and strain variables.

Examples of MOOSE input files with a comparison between analytical and numerical results are
provided in section 5.

RHEOLOGICAL MODELS FOR LINEAR VISCOELASTICITY

A linear viscoelastic material is a material in which the stress σ depends on the strain ε and its rate
and/or history. This can be written in integral form as (1), in which the creep function J and relaxation
function R are fourth-order tensors with the same symmetries as the elastic stiffness tensor.


ε(t) =

t∫
0
J(t, t′) : ∂σ(t′)

∂t′ dt′

σ(t) =
t∫

0
R(t, t′) : ∂ε(t′)

∂t′ dt′
(1)

J and R are not independent, and are related through the following convolution (see [Drozdov, 1998] for
a formal proof), in which I is the fourth-order identity tensor:

t∫
0

J(t, t′) :
∂R(t′, 0)
∂t′

dt′ =

t∫
0

R(t, t′) :
∂J(t′, 0)
∂t′

dt′ = I (2)

In practive, the exact J and R are rarely known. Instead, they are approximated using springs and
dashpots assembled in parallel and/or in series.

Two families of visco-elastic materials are commonly considered: the generalized Kelvin-Voigt model
and the generalized Maxwell model (see Figure 1). They consist in a chain of Kelvin-Voigt (alternatively
Maxwell) units assembled in series (alternatively, in parallel). The chain is usually complemented with an
additional spring at the head of the chain, and, in some cases, an additional dashpot at the end.

The choice of rheological model (generalized Kelvin-Voigt or generalized Maxwell) is arbitrary, as for
each generalized Kelvin-Voigt model there is an equivalent generalized Maxwell model (and vice-versa)
[Biot, 1954, 1955]. Generalized Kelvin-Voigt models are usually easier to fit on creep data, while generalized
Maxwell models are more appropriate to represent relaxation data.
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Figure 1. Rheological models for linear visco-elasticity: a) Kelvin-Voigt model, b) generalised
Kelvin-Voigt model, c) Maxwell model d) generalised Maxwell model.

Notations

For both materials, the constitutive behavior depends on the stress σ, the strain ε, and a series of internal
viscous strains α1...αN , each representing the strain in one dashpot of the model, and N the number of
dashpots in the model.

C0 represents the fourth-order stiffness tensor of the first spring in the chain, while Ci and Ei represent
the fourth order stiffness and viscosity tensors of the ith spring and dashpot, respectively. Depending on the
model, C0 is not the true elasticity tensor of the material CE .

For the sake of simplicity in the following developments, Ei is considered as a scalar function of Ci, with
ηi the characteristic time of the dashpot:

Ei = ηi Ci (3)

The time is discretized in a series of instants t(0)...t(n), t(n+1), with the (n) and (n+1) exponent describing the
properties at the previous and the next time step respectively. We pose ∆t(n+1) as t(n+1) − t(n).

The purpose of this chapter’s developments is to transform the constitutive equation (1) into an
equivalent form (4), in which Ceq is an apparent stiffness tensor, and αeq an apparent internal strain which
only depends on the state of the material at the previous time step.

σ(n+1) = C(n+1)
eq :

[
ε(n+1) −α(n)

eq

]
(4)
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(4) can then easily be solved through standard FEM procedures for thermo-elasticity.

To obtain such a relationship, a Newmark FD scheme is used to update the internal viscous strains
α1...αN (see for example [Curnier, 1993, Zienkiewicz et al., 1984]). For each dashpot i we introduce a
parameter θi between 0 and 1, so that:

α(n+1)
i = α(n)

i + ∆t(n+1)
[
θi α̇

(n+1)
i + (1 − θi) α̇

(n)
i

]
(5)

The choice of θi is arbitrary, but controls the convergence properties of the FD scheme. θi = 0
corresponds to a forward Euler scheme (purely explicit solution) while θi = 1 corresponds to a backward
Euler scheme (purely implicit solution).

The following developments assume that θi > 0 so that it can be inverted.

GENERALIZED KELVIN-VOIGT MODEL

The generalized Kelvin-Voigt model obeys to the following set of constitutive equations:

σ = C0 :

ε − N∑
1

αi

 (6)

∀i ∈ [1,N] , σ = Ci :
[
αi + ηi α̇i

]
(7)

This corresponds to the following creep function J:

J(t) = C−1
0 +

N∑
1

C−1
i e−t/ηi (8)

The true elasticity tensor of the material is simply the first spring in the chain:

CE = C0 (9)

Inserting (5) in (7) gives:

∀i ∈ [1,N] , σ(n+1) = Ci :
[(

1 +
ηi

∆t(n+1)θi

)
α(n+1)

i −

(
ηi

∆t(n+1)θi

) [
α(n)

i + ∆t(n+1)(1 − θi)α̇
(n)
i

]]
(10)

Which can then be inserted in (6):

σ(n+1) = C0 :

ε(n+1) −

N∑
1

[(1 +
ηi

∆t(n+1)θi

)
Ci

]−1

:
[
σ(n+1) +

(
ηi

∆t(n+1)θi

) [
α(n)

i + ∆t(n+1)(1 − θi)α̇
(n)
i

]]

(11)

Rearranging the terms, (11) can be identified with (4) using:
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C(n+1)
eq =

C−1
0 +

N∑
1

[(
1 +

ηi

∆t(n+1)θi

)
Ci

]−1

−1

(12)

α(n)
eq =

N∑
1

(
ηi

∆t(n+1)θi

) [
α(n)

i + ∆t(n+1)(1 − θi)α̇
(n)
i

]
(13)

After resolution of (4) with a FEM software (providing both ε(n+1) and σ(n+1)), the αi can be updated
using (10), and then α̇i using (5).

GENERALIZED MAXWELL MODEL

The generalized Maxwell model obeys to the following set of constitutive equations:

σ =

 N∑
0

Ci

 : ε −

 N∑
1

Ci : αi

 (14)

∀i ∈ [1,N] , 0 = αi + ηi α̇i − ε (15)

The generalized Maxwell model results in the following relaxation function:

R(t) = C0 +

N∑
1

Ci e−t/ηi (16)

The true elasticity tensor of the material is the sum of all springs in the chain:

CE =

N∑
0

Ci (17)

Inserting (5) in (15) gives:

∀i ∈ [1,N] ,
(
1 +

ηi

∆t(n+1)θi

)
α(n+1)

i =

(
ηi

∆t(n+1)θi

) [
ε(n+1) + α(n)

i + ∆t(n+1) (1 − θi) α̇
(n)
i

]
(18)

Which can then be inserted in (14) to give:

σ(n+1) =

 N∑
0

Ci

 : ε(n+1) −

 N∑
1

Ci :

 ηi
∆t(n+1)θi

1 +
ηi

∆t(n+1)θi

 [ε(n+1) + α(n)
i + ∆t(n+1) (1 − θi) α̇

(n)
i

] (19)

By rearranging the terms, (19) can be rewritten as (4) by using:
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C(n+1)
eq = C0 +

 N∑
1

 1
1 +

ηi
∆t(n+1)θi

Ci

 (20)

α(n)
eq =

[
C(n+1)

eq

]−1
:

 N∑
1

Ci :

 ηi
∆t(n+1)θi

1 +
ηi

∆t(n+1)θi

 [α(n)
i + ∆t(n+1) (1 − θi) α̇

(n)
i

] (21)

After resolution of (4) with a FEM software (providing both ε(n+1) and σ(n+1)), the αi can be updated
using (18), and then α̇i using (5).

NUMERICAL IMPLEMENTATION

The two aforementioned models were implemented using the tensor_mechanics module from
MOOSE framework. The implementation is based upon the following set of considerations:

• Both models require the same set of variables (fourth-order tensors of each spring Ci, characteristic
time of each dashpot ηi, internal strains of each dashpot αi and equivalent properties Ceq, αeq.

• The workflow of the resolution is similar in both models. The exact equations depend on the model,
but the order in which they are applied does not.

• All equations described above can be used even when the Ci and ηi are dependent on time,
temperature, relative humidity, or other factors.

Therefore, a set of five distinct classes was implemented in MOOSE:

• A LinearViscoelasticityBase class that stores the data used by the viscoelastic model and
controls the workflow of the resolution, and is used as a base class for all viscoelastic models.

• A GeneralizedKelvinVoigtBase class that represents the set of equations leading to (12-13).

• A GeneralizedKelvinVoigtModel class that sets constant values for the Ci and ηi for a generalized
Kelvin-Voigt model.

• A GeneralizedMaxwellBase class that represents the set of equations leading to (20-21).

• A GeneralizedMaxwellModel class that sets constant values for the Ci and ηi for a generalized
Maxwell model.

LinearViscoelasticityBase, GeneralizedKelvinVoigtBase and GeneralizedMaxwellBase
are purely virtual classes. As such, they can’t be called directly from the MOOSE input files. Instead, a user
must use a GeneralizedKelvinVoigtModel or a GeneralizedMaxwellModel to represent a
viscoelastic material.
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Data Structures

Table 1 references the list of variables stored in the LinearViscoelasticityBase class at each
quadrature point of the FEM mesh. The inverse tensors of [C0...CN], CE and C(n+1)

eq are also stored if
required to reduce computational time.

For the sake of numerical efficiency, the αi strains have been transformed into γi defined as follows,
since that expression appears in both (13) and (21).

∀i ∈ [1,N] , γ(n)
i = α(n)

i + ∆t(n+1) (1 − θi) α̇
(n)
i (22)

Using that definition for γ(n)
i allows to store both α(n)

i and α̇(n)
i in the same array instead of two separate

arrays, and therefore reduces the memory cost by half.

To simplify the notations, we also introduce η(n+1)
i as:

∀i ∈ [1,N] , η(n+1)
i =

ηi

∆t(n+1)θi
(23)

(12-13) simplify as:

C(n+1)
eq =

C−1
0 +

N∑
1

[(
1 + η(n+1)

i

)
Ci

]−1

−1

(24)

α(n)
eq =

N∑
1

η(n+1)
i γ(n)

i (25)

While (20-21) become:

C(n+1)
eq = C0 +

 N∑
1

 1

1 + η(n+1)
i

Ci

 (26)

α(n)
eq =

[
C(n+1)

eq

]−1
:

 N∑
1

Ci :

 η(n+1)
i

1 + η(n+1)
i

γ(n)
i

 (27)

At the end of the time step, when σ(n+1) and σ(n) are know, the γi can be updated using the following
relation (for a generalized Kelvin-Voigt material)

∀i ∈ [1,N] , γ(n+1)
i =

1
θi

 η(n+1)
i

1 + η(n+1)
i

− (1 − θi)

γ(n)
i +

[(
1 + η(n+1)

i

)
Ci

]−1
: σ(n+1)

 (28)

Or, for a generalized Maxwell model:

∀i ∈ [1,N] , γ(n+1)
i =

1
θi

η(n+1)
i − (1 − θi)

1 + η(n+1)
i

γ(n)
i +

 1

1 + η(n+1)
i

 ε(n+1)

 (29)
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Table 1. List of MOOSE variables for linear viscoelastic materials

MOOSE variable Symbol
_first_elasticity_tensor C0
_springs_elasticity_tensors [C1...CN]
_dashpot_viscosities

[
η1...ηN

]
_viscous_strains [γ1...γN]
_apparent_elasticity_tensor C(n+1)

eq

_apparent_creep_strain α(n)
eq

_instantaneous_elasticity_tensor CE

_creep_strain εC

Furthermore, C(n+1)
eq and α(n+1)

eq are apparent properties, that is, variables that only arise from the use of
the FD scheme, but are not related to actual physical properties of the material. This may lead to spurious
effects, notably when combining that model with other nonlinear models such as damage or plasticity. The
physical creep strain εC is therefore introduced as:

σ(n+1) = CE :
[
ε(n+1) − ε(n+1)

C

]
(30)

If C(n+1)
eq and α(n+1)

eq are known, εC can be determined provided either the stress σ or the strain ε are also
known. In the specific case where ε is provided, εC can be obtained by eliminating σ in (4) and (30):

ε(n+1)
C = ε(n+1) −

[
C−1

E : C(n+1)
eq

]
:
[
ε(n+1) −α(n)

eq

]
(31)

Numerical workflow

The following procedure is called at each quadrature point of the FEM mesh, at each time step, and at
each iteration of the MOOSE solver.

In the following, [moose] indicates a functionality provided by MOOSE independently of the viscoelastic
implementation, [base] indicates a function provided by GeneralzedKelvinVoigtBase or
GeneralzedMaxwellBase, and [model] indicates a functionality from GeneralizedKelvinVoigtModel
or GeneralizedMaxwellModel.
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1. Recall the strain and the stress at the previous time step σ(n), ε(n) [moose]

2. Compute the strain ε(n+1) [moose]

3. Compute the current values of C0...CN , η1...ηN [model]

4. Compute the current true elasticity tensor CE [base]

5. Update the viscous strains γ(n)
1 ...γ(n)

N [base]

6. Compute the apparent elasticity tensor C(n+1)
eq [base]

7. Compute the apparent creep strain α(n)
eq [base]

8. Compute the current true creep strain ε(n+1)
C [moose]

9. Compute the current stress σ(n+1) [moose]

At any given time step, all steps are required for the first iteration of the MOOSE solver. However, if
C0...CN , η1...ηN are not modified from one MOOSE solver iteration to another, only step 2, 8 and 9 are
necessary.

Table 2 shows which equation is used at which step of the algorithm.

Table 2. Correspondance between algorithm steps and equations

Step Generalized Generalized
Kelvin-Voigt Maxwell

4 (9) (17)
5 (28) (29)
6 (24) (26)
7 (25) (27)
8 (31) (31)
9 (30) (30)

Stress and strain calculations

In MOOSE, there are several options to compute the strain (step 3) and the stress (step 9). Two options
are available for viscoelastic material:

• A total strain formulation, which is incompatible with other inelastic phenomena such as plasticity or
damage.

– Strain calculator: ComputeSmallStrain
– Stress calculator: ComputeLinearViscoelasticStress
– Additional materials: none
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• An incremental strain formulation (using either small strains asumption, or finite strains), which is
compatible with other inelastic phenomena.

– Strain calculator: ComputeIncrementalSmallStrain or ComputeFiniteStrain

– Stress calculator: ComputeMultipleInelasticStress (or one of its derived classes)

– Additional materials: LinearViscoelasticStressUpdate

The ComputeLinearViscoelasticStress and LinearViscoelasticStressUpdate classes apply
equations (31) and (30), and have been specifically written for this framework.

Compatibility with eigenstrains

Eigenstrains refer to strain that the material exhibits without inducing stress. These can be thermal
expansion, and, for concrete, drying shrinkage, ASR or RIVE strains, among others.

The framework developped above remains valid with eigenstrains, provided the strain ε which appears in
the equations above is the mechanical strain, that is the total strain to which the eigenstrains have been
substracted:

ε = εtotal − εeigen (32)

In MOOSE, this decomposition is performed by strain calculator classes such as
ComputeSmallStrain, ComputeIncrementalSmallStrain or ComputeFiniteStrain, and therefore
does not require additional implementation in that regard.

DRIVING EIGENSTRAIN

Some authors have introduce the concept of effective stress [Gawin et al., 2007], through which the creep
strain increases as a result of a driving eigenstrain εD (in the case of [Gawin et al., 2007] work, the driving
eigenstrain would be the drying shrinkage strain).

The driving eigenstrain is added to the stress for the determination of the viscous strains αi, but not the
elastic strain ε − εC . In that case, the equations above must be modified accordingly.

Generalized Kelvin-Voigt model

The constitutive relations (7) becomes:

∀i ∈ [1,N] , σ + [CE : εD] = Ci :
[
αi + ηi α̇i

]
(33)

After some algebra, (25) is transformed into:

α(n)
eq =

 N∑
1

η(n+1)
i γ(n)

i + CE :
[(

1 + η(n+1)
i

)
Ci

]−1
: εD

 (34)
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The internal update (28) retains its formulation, except that σ(n+1) must be replaced with
σ(n+1) + [CE : εD].

All other equations appearing in Table 2 (column 2) are unchanged.

Generalized Maxwell model

The constitutive relations (15) becomes:

∀i ∈ [1,N] , 0 = αi + ηi α̇i − [ε − εD] (35)

And the apparent creep strain (21) is:

α(n)
eq =

[
C(n+1)

eq

]−1
:

 N∑
1

Ci :

 η(n+1)
i

1 + η(n+1)
i

γ(n)
i

 +
[
CE − C

(n+1)
eq

]
:
[
C(n+1)

eq

]−1
: εD (36)

The internal update (29) remains the same, except that ε(n+1) is replaced with ε(n+1) + εD.

All other equations appearing in Table 2 (column 3) are unchanged.

CHOICE OF PARAMETER θI

The parameter θi is a purely numerical parameter that relates to the implicit-explicit nature of the FD
scheme (θi = 1 being purely implicit and θi = 0 purely explicit).

The scheme is unconditionally convergent for θi ≥ 0.5 (that is, it converges regardless of the size of the
time step ∆t(n+1)). For θi < 0.5, the scheme converges only for small time steps. A complete analysis of the
convergence properties of such FD scheme can be found in [Curnier, 1993].

The general scheme presented in this document seems slightly different from other schemes found in the
literature for linear viscoelastic materials, such as [Zienkiewicz et al., 1968, Chazal and Pitti, 2009, Šmilauer
and Bažant, 2010, Lavergne et al., 2015] for the generalized Kelvin-Voigt model, or [Guidoum, 1994, Park
et al., 1996, Zocher et al., 1997, Tran et al., 2011] for the generalized Maxwell model. However, all these
schemes are actually specific cases of the framework developped above.

Indeed, these schemes rely on an exponential development of the internal strains αi:

αi(t) = α(n)
i + A

(
1 − e−

t−t(n)
ηi

)
+ B

(
t − t(n)

)
(37)

With A and B two constant to determine from α(n+1)
i and α̇(n)

i .

Derivation of (37) with respect to time gives:

α̇i(t) =
A
ηi

e−
t−t(n)
ηi + B (38)

Setting t = t(n) or t = t(n+1) in (38) provides the values for A and B:
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A =
ηi

1 − e−
∆t(n+1)

ηi

[
α̇(n)

i − α̇
(n+1)
i

]
(39)

B = α̇(n)
i −

1

1 − e−
∆t(n+1)

ηi

[
α̇(n)

i − α̇
(n+1)
i

]
(40)

Evaluating (37) at t = t(n+1) and using (39-40), we find:

α(n+1)
i = α(n)

i + ηi
[
α̇(n)

i − α̇
(n+1)
i

]
+ ∆t(n+1)

α̇(n)
i −

1

1 − e−
∆t(n+1)
ηi

[
α̇(n)

i − α̇
(n+1)
i

] (41)

Rearranging the terms:

α(n+1)
i = α(n)

i + ∆t(n+1)


 ηi

∆t(n+1) −
e−

∆t(n+1)
ηi

1 − e−
∆t(n+1)
ηi

 α̇(n)
i +

 1

1 − e−
∆t(n+1)

ηi

−
ηi

∆t(n+1)

 α̇(n+1)
i

 (42)

Which is equivalent to (5) with the following choice of θi:

θi =
1

1 − e−
∆t(n+1)
ηi

−
ηi

∆t(n+1) (43)

One can further show that in this case, θi is always greater than 0.5, regardless of the choice of ηi and
∆t(n+1) (as long as both are positive), thus prooving the unconditional convergence of such schemes.

In MOOSE, the user can control the choice of θi with the integration_rule input parameter, which
can be one of the following options:

• backward-euler: θi = 1

• mid-point: θi = 0.5

• newmark: θi set by the user using the theta input parameter

• zienkiewicz: θi automatically computed with (43)

INPUT PARAMETERS

A MOOSE user can use either a GeneralizedKelvinVoigtModel or GeneralizedMaxwellModel
to define a linear viscoelastic material. The list of input parameters is the same for both classes, and is
summarized in Table 3.

• The parameters creep_modulus, creep_viscosity and creep_ratio (if provided) are vectors
that must be of the same length.

• For the GeneralizedKelvinVoigtModel, creep_viscosity can be longer than creep_modulus
by one element. Doing so adds an extra dashpot in series with the rest of the chain, for example to
simulate Burger’s materials.
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• If creep_ratio is not provided, the Poisson’s ratio of each spring are assumed to be equal to
poisson_ratio

• The default integration_rule is backward-euler.

• theta is only required if integration_rule is set to newmark.

Table 3. List of input parameters for the GeneralizedKelvinVoigtModel and Generalized-
MaxwellModel

MOOSE input parameter Symbol Notes
young_modulus EE required
poisson_ratio νE required
creep_modulus [E1...EN] required
creep_viscosity [η1...ηN] required
creep_ratio [ν1...νN] optional
integration_rule - optional
theta θ optional
driving_eigenstrain εD optional, name of the eigenstrain variable

used as driving eigenstrain
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NUMERICAL MODELS FOR CONCRETE CREEP

This section presents an linear aging viscoelastic model for concrete. The model is based on a
logarithmic creep model initially developped for cement paste [Giorla, 2015, Giorla et al., 2017] and adapted
for concrete using concepts by [Benboudjema et al., 2005].

The model reproduces the main features of concrete creep:

• The creep strain increases logarithmically with time [Vandamme and Ulm, 2009]

• The creep strain rate is increased under high temperature [Schneider, 1988]

• The creep strain rate is decreased under constant, low, relative humidity [Tamtsia and Beaudoin, 2000]

• The creep strain increases in drying conditions [Pickett, 1942]

Other effects (nonlinarity with the load [Freudenthal and Roll, 1958] or asymmetry in tension vs
compression [Rossi et al., 2013]) are not accounted for in the model.

Examples of Grizzly input files with a comparison between analytical and numerical results are provided
in section 5.

CONSTITUTIVE MODEL

Concrete is represented with an aging Burger’s model, that is, a spring, a Kelvin-Voigt unit, and a
dashpot assembled in series, as shown in Figure 2.

This decomposes the strain ε into three components:

• The elastic strain εE .

• A recoverable creep strain εr, associated with the Kelvin-Voigt unit. This represents the short-term
creep strain, which can generally be recovered upon unloading.

• A non-recoverable creep strain εv, associated with the second dashpot. This represents the long-term
creep strain, which is not recovered upon unloading, and follows a logarithmic trend in time.

ℂ

Elasticity
Recoverable

creep
Non-Recoverable

creep

ℂ

η

ηE

r

r

v

Figure 2. Rheological model for concrete.
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Table 4. Correspondance with the notations from the previous section

Component Strain Spring Dashpot
Elastic εE = ε −α1 −α2 CE = C0 [-]
Recoverable εr = α1 Cr = C1 ηr = η1
Non-recoverable εv = α2 [-] ηv = η2

The correspondance between these notations and the formalism developped in the previous section can
be found in Table 4.

Assuming that the deformation is isotropic, this makes a total of six material parameters to identify:

• The Young’s modulus EE and Poisson’s ratio νE of the material, used to build the fourth-order stiffness
tensor CE .

• The modulus Er and ratio νr associated with the recoverable creep strain, used to build Cr. Without
information about the unloading properties of concrete, they can be approximated with Er = EE and
νr = νE .

• The two characteristic times ηr and ηv associated with each dashpot.

The model is built so that it depends on time t, temperature T (in Kelvin), relative humidity h and its
time-derivative ḣ. Other material parameters may be introduced in the following sections.

Logarithmic Creep

Logarithmic creep refers to a creep function J(t) that increases logarithmically with time. Generally, this
is defined with [Zhang et al., 2014]:

∂J(t)
∂t
∝

1
t

(44)

This can be achieved by setting the long-term characteristic time ηv as a function of time:

ηv(t)
∣∣∣∣∣
T=cst, h=cst

=

(
1 +

t
τv

)
ηv(t = 0)

∣∣∣∣∣
T=cst, h=cst

(45)

With τv a material parameter that controls the transition between the recoverable and the non-recoverable
(logarithmic) regimes: Changing τv shifts the creep curve along the time axis, but does not modify its shape
(in a logarithmic plot).

Similar creep curves can be obtained by setting ηv as a function of the maximum strain exhibited by the
material maxt(ε(t)) [Sellier et al., 2016], but this is outside the scope of this model.

Equation (45) is similar to the q4 term from the well-known B3 model [Bažant and Baweja, 2000].
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Creep at High Temperature

Creep is accelerated using an Arrhenius-like law. This is a common asumption in concrete creep models
[Bažant and Baweja, 2000, Sellier et al., 2016].

We introduce the variableA so that:

A(T) = exp
(
Ta

(
1
T
−

1
Tre f

))
(46)

With Tre f the temperature at which the reference properties are measured, and Ta the activation
temperature (all temperatures are in Kelvin). We further assume that the temperature affects both the
recoverable creep and irrecoverable creep equally:

ηr(T)
∣∣∣∣∣
t=cst, h=cst

= A(T) ηr(Tre f )
∣∣∣∣∣
t=cst, h=cst

(47)

ηv(T)
∣∣∣∣∣
t=cst, h=cst

= A(T) ηv(Tre f )
∣∣∣∣∣
t=cst, h=cst

(48)

Creep at Constant Relative Humidity

Creep is reduced under constant, low, relative humidity [Wittmann, 1970, Tamtsia and Beaudoin, 2000].
This is not to be confounded with the Pickett effect [Pickett, 1942], that is the increase of creep in drying
conditions (variable relative humidity).

Following [Benboudjema et al., 2005], we assume that a constant, low, relative humidity decreases the
amplitude of the creep deformation, but not its characteristic time. This is achieved by expressing Er and ηv

as a function of h:

Er(h)
∣∣∣∣∣
t=cst, T=cst

=
1
h

Er(h = 1)
∣∣∣∣∣
t=cst, T=cst

(49)

ηv(h)
∣∣∣∣∣
t=cst, T=cst

=
1
h
ηv(h = 1)

∣∣∣∣∣
t=cst, T=cst

(50)

Drying Creep

Two strategies are possible to simulate drying creep.

• The creep strain derives not only from the mechanical stress, but also from the self-imposed pore
pressure from which stems the drying shrinkage. This method has been recently used by [Gawin et al.,
2007, Sellier et al., 2016], and can be simulated using the driving eigenstrain mechanism described at
the end of the previous section. Doing so doesn’t require any adjustment to the concrete creep model
presented here.

• Drying creep is an additional creep strain which rate depends linearly on the drying rate ḣ. This
approach is more common in concrete creep model, and has been used [Bažant et al., 1997,
Benboudjema et al., 2005] among others. The following developments are based on this method.
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Introducing a drying creep strain is equivalent to add a second dashpot of characteristic time ηd in series
with the rest of the rheological model, and its associated drying creep strain. For sake of numerical efficiency,
both dashpots can be combined into a single dashpot using the inverse mixture law. Doing so alleviates the
introduction of a new drying creep strain variable (εv then represents both the nonrecoverable basic creep and
the drying creep).

Assuming that the characteristic time of the drying creep is given by:

ηd(ḣ)
∣∣∣∣∣
t=cst, T=cst

=
1
|ḣ|
ηd(ḣ = −1)

∣∣∣∣∣
t=cst, T=cst

(51)

The characteristic time ηv then reads:

ηv(ḣ)
∣∣∣∣∣
t=cst, T=cst

=
1

1

ηd(ḣ)
∣∣∣
t=cst, T=cst

+ 1

ηv(ḣ=0)
∣∣∣
t=cst, T=cst

(52)

Combined Model

Combining the effects of aging (45), temperature (46-48), and relative humidity (49-52) one gets the
following expressions, in which (re f ) indicates the reference values of the material properties considered.

Er =
1
h

E(re f )
r (53)

ηr = A(T) η(re f )
r (54)

ηv =
A(T)

|ḣ|
η

(re f )
d

+ h(
1+ t

τv

)
η

(re f )
v

(55)

NUMERICAL IMPLEMENTATION

The concrete creep model developped above has been implemented in Grizzly as
ConcreteLogarithmicCreepModel. Table 5 references the input parameters for the model, as well as the
coupled variables for temperature and humidity.

Equations (53-55) are applied at step 3 of the resolution procedure presented in the previous section. All
other steps are automatically carried out by an underlying GeneralizedKelvinVoigtBase object.

Only youngs_modulus, poissons_ratio and long_term_viscosity are required to simulate the
material. The following strategies are applied to activate the other properties:

• If recoverable_youngs_modulus is missing, it is set equal to youngs_modulus.

• If recoverable_poissons_ratio is missing, it is set equal to poissons_ratio.

• If recoverable_viscosity is missing, it is set equal to long_term_characteristic_time. This
allows a smooth transition between the short-term and long-term creep regimes.

• If long_term_characteristic_time is missing, it is set equal to 1 (in days).
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• If temperature is defined, activation_temperature becomes required. Otherwise, the model
assumes a constant temperature equal to reference_temperature.

• If reference_temperature is missing, it is set equal to 20 (in ◦C).

• If drying_creep_viscosity is defined, humidity becomes required. If humidity is defined but
not drying_creep_viscosity, the drying creep component (52) is not used.

Note: If the coupled humidity or temperature variables are defined, they must be evaluated at the
beginning of the time step. The easiest way to accomplish this is to use the MOOSE MultiApp system to
perform the transport analysis before the mechanical analysis.

Table 5. List of input parameters for the ConcreteLogarithmicCreepModel implemented in Grizzly

Grizzly input parameter Symbol Notes
youngs_modulus EE required
poissons_ratio νE required
recoverable_youngs_modulus E(re f )

r optional
recoverable_poissons_ratio νr optional
recoverable_viscosity η

(re f )
r optional

long_term_viscosity η
(re f )
v required

long_term_characteristic_time τ
(re f )
v optional

activation_temperature Ta optional, in K
reference_temperature Tre f optional, in ◦C
drying_creep_viscosity η

(re f )
d optional

MOOSE coupled variables Symbol Notes
temperature T optional, in ◦C
humidity h optional
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EXAMPLES

This section presents some MOOSE and Grizzly input files, as well as comparison between experimental
and numerical results. The generalized Kelvin-Voigt and generalized Maxwell examples are compatible with
both MOOSE (using the tensor_mechanics module) and Grizzly, while the examples for concrete creep
are only compatible with Grizzly.

Numerical solutions in this section have been obtained on one hexahedral element subject to uniaxial
tensile stress (for creep tests) or displacement (for relaxation tests).

GENERALIZED KELVIN-VOIGT MODEL

The following [Materials] and [UserObjects] blocks are necessary to simulate a generalized
Kelvin-Voigt model with the arbitrary material properties shown in Table 6.

[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = ’5e9 20e9’
creep_viscosity = ’1 10’
poisson_ratio = 0.2
young_modulus = 10e9

[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt

[../]
[]

This material obeys to the following creep curve:

J(t) = 0.1 + 0.2
(
1 − e−t

)
+ 0.05

(
1 − e−t/10

)
[m m−1 GPa−1] (56)
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Table 6. Examples of material properties for a generalized Kelvin-Voigt model

Symbol Value Unit
Elastic properties EE 10 [GPa]

νE 0.2 [-]
First Kelvin-Voigt module E1 5 [GPa]

ν1 0.2 [-]
η1 1 [days]

Second Kelvin-Voigt module E2 20 [GPa]
ν1 0.2 [-]
η1 10 [days]

The creep curve obtained with a MOOSE simulation is compared to the analytical expression (56) on
Figure 3.

Remark: The stress, creep and strain from all examples in this section can be replaced with one of
the following options:

• Option 1: with finite strains.

[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeFiniteStrain
displacements = ’disp_x disp_y disp_z’

[../]

• Option 2: with total small strains (the creep block becomes unecessary)

[./stress]
type = ComputeLinearViscoelasticStress

[../]
[./strain]
type = ComputeSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]

GENERALIZED MAXWELL MODEL

The following [Materials] and [UserObjects] blocks are necessary to simulate a generalized
Kelvin-Voigt model with the arbitrary material properties shown in Table 7. Note that for generalized
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Figure 3. Comparison between numerical creep curve from a MOOSE simulation with its
analytical solution for a generalized Kelvin-Voigt material with two modules.
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Maxwell materials, the Young’s modulus must be greater or equal to the sum of the creep moduli E1...EN ,
otherwise the first spring constant E0 becomes negative, see (17). For that specific example, E0 = 10 MPa.

[Materials]
[./maxwell]
type = GeneralizedMaxwellModel
creep_modulus = ’5e9 20e9’
creep_viscosity = ’1 10’
poisson_ratio = 0.2
young_modulus = 35e9

[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = maxwell

[../]
[]

Table 7. Examples of material properties for a generalized Maxwell model

Symbol Value Unit
Elastic properties EE 35 [GPa]

νE 0.2 [-]
First Kelvin-Voigt module E1 5 [GPa]

ν1 0.2 [-]
η1 1 [days]

Second Kelvin-Voigt module E2 20 [GPa]
ν1 0.2 [-]
η1 10 [days]
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Figure 4. Comparison between numerical relaxation curve from a MOOSE simulation with
its analytical solution for a generalized Maxwell material with two modules.

This material obeys to the following relaxation curve:

R(t) = 10 + 5e−t + 20e−t/10 [GPa m m−1] (57)

The relaxation curve obtained with a MOOSE simulation is compared to the analytical expression (56)
on Figure 4.

CONCRETE LOGARITHMIC CREEP MODEL

The following inputs are only compatible with Grizzly. All examples below use the material properties
defined in Table 8.

Minimal Example

The following input shows the required parameters to make the model work. It implies constant
temperature (equal to the reference temperature Tre f ) and constant relative humidity (equal to 1).
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Table 8. Examples of model parameters for a concrete logarithmic creep model

Symbol Value Unit
Elastic properties EE 30 [GPa]

νE 0.2 [-]
Recoverable creep properties E(re f )

r 40 [GPa]
νr 0.2 [-]

η
(re f )
r 2 [days]

Non-recoverable creep properties η
(re f )
v 10 [days]
τ

(re f )
v 1 [days]

Temperature effect Ta 1000 [K]
Tre f 20 [◦C]

Humidity effect η
(re f )
d 0.5 [days]

[Materials]
[./logcreep]
type = ConcreteLogarithmicCreepModel
poissons_ratio = 0.2
youngs_modulus = 30e9
recoverable_youngs_modulus = 40e9
recoverable_viscosity = 2
long_term_viscosity = 10
long_term_characteristic_time = 1

[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = logcreep

[../]
[]
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In this case, the analytical solution for the creep function is:

J(t) = 0.033333 + 0.025
(
1 − e−t/2

)
+ 0.003333log(1 + t) [m m−1 GPa−1] (58)

Creep Under Elevated Temperature

The following input file represents how to account for temperature effects. For this example, the
temperature is arbitrarily set to 120 ◦C.

[Functions]
[./temp_function]
type = ParsedFunction
value = 120

[../]
[]

[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
initial_condition = 120

[../]
[]

[AuxKernels]
[./temperature]
type = FunctionAux
variable = T
function = temp_function
execute_on = timestep_begin

[../]
[]

[Materials]
[./logcreep]
type = ConcreteLogarithmicCreepModel
poissons_ratio = 0.2
youngs_modulus = 30e9
recoverable_youngs_modulus = 40e9
recoverable_viscosity = 2
long_term_viscosity = 10
long_term_characteristic_time = 1
temperature = T
activation_temperature = 1000

[../]
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[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = logcreep

[../]
[]

In this case, the analytical solution for the creep function is:

J(t) = 0.033333 + 0.025
(
1 − e−A t/2

)
+ 0.003333A log(1 + t) [m m−1 GPa−1] (59)

WithA = 2.38157.

Creep Under Low Relative Humidity

The following input file represents how to account for a low, constant, relative humidity. Drying creep is
disabled in that test. The relative humidity has been arbitrarily set to 0.5.

[Functions]
[./RH_function]
type = ParsedFunction
value = 0.5

[../]
[]

[AuxVariables]
[./h]
order = CONSTANT
family = MONOMIAL
initial_condition = 0.1

[../]
[]
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[AuxKernels]
[./humidity]
type = FunctionAux
variable = h
function = RH_function
execute_on = timestep_begin

[../]
[]

[Materials]
[./logcreep]
type = ConcreteLogarithmicCreepModel
poissons_ratio = 0.2
youngs_modulus = 30e9
recoverable_youngs_modulus = 40e9
recoverable_viscosity = 2
long_term_viscosity = 10
long_term_characteristic_time = 1
humidity = h

[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = logcreep

[../]
[]

In this case, the analytical solution for the creep function is:

J(t) = 0.033333 + 0.0125
(
1 − e−t/2

)
+ 0.0016666log(1 + t) [m m−1 GPa−1] (60)

29



Drying Creep

The following inputs represent a drying creep test. For this example, the rate of drying has been set
constant to 0.01 per day (ranging from 1 to 0 at 100 days). In realistic conditions however, the rate of drying
would slow down as a function of time.

[Functions]
[./RH_function]
type = PiecewiseLinear
x = ’0 100 1000’
y = ’1 0 0’

[../]
[]

[AuxVariables]
[./h]
order = CONSTANT
family = MONOMIAL
initial_condition = 0.1

[../]
[]

[AuxKernels]
[./humidity]
type = FunctionAux
variable = h
function = RH_function
execute_on = timestep_begin

[../]
[]

[Materials]
[./logcreep]
type = ConcreteLogarithmicCreepModel
poissons_ratio = 0.2
youngs_modulus = 30e9
recoverable_youngs_modulus = 40e9
recoverable_viscosity = 2
long_term_viscosity = 10
long_term_characteristic_time = 1
drying_creep_viscosity = 0.5
humidity = h

[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = ’creep’

[../]
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[./creep]
type = LinearViscoelasticStressUpdate

[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = ’disp_x disp_y disp_z’

[../]
[]

[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = logcreep

[../]
[]

In these conditions, the analytical creep function can be derived, after some algebra, as:

J(t) = 0.033333 elastic term
+ 0.025

(
1.02

(
1 − e−t/2

)
− 0.1 t

)
recoverable basic creep

+ 0.003333333
(
1.01 log(1 + t) − 0.1 t

)
irrecoverable basic creep

+ 0.00066666666 t drying creep

(61)

Comparison between numerical and analytical models

Figure 5 shows simulated results for the four different cases described above against their analytical
solution, thus prooving the correct implementation of the concrete logarithmic creep model into Grizzly.
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Figure 5. Comparison between numerical creep curves obtained with Grizzly for the different
examples of the concrete logarithmic creep curves and their analytical solutions (58-61).
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CONCLUSION

In this report, a numerical model for concrete creep has been implemented into Grizzly. The model is
adapted from existing models in the literature and reproduces most of the concrete creep features, including:

• A non-recoverable, logarithmic, long-term creep deformation.

• Increase of creep under high temperature.

• Decrease of creep under low, constant, relative humidity.

• Increase of creep under drying conditions.

The implementation relies on a more generic numerical framework to simulate linear viscoelastic
materials. This framework is based on materials represented as springs and dashpots assembled either in
series or in parallel, and has been implemented into MOOSE as part of the tensor_mechanics module. It
uses an internal finite-difference time-stepping scheme that is a generalization of most numerical schemes
traditionally used for concrete creep.

Numerical examples proving the validity of the implementation as well as examples of MOOSE and
Grizzly input files are provided.

The models have been written so that they are compatible with other sources of inelastic deformations
within the MOOSE framework. This will allow, in future work, to couple the newly implemented creep
models to continuum damage models, and other degradation phenomena such as ASR or RIVE models.

As noted in previous reports [Giorla, 2016, Giorla and Hayes, 2017], a numerical model to compute
continuum damage in concrete is still required for the constitutive models implemented in Grizzly to be
representative of the material behavior.
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